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A new algorithm for surface tension model in moving
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Shuai Zhang∗,†, Koji Morita, Kenji Fukuda and Noriyuki Shirakawa

Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka, Japan

SUMMARY

A new algorithm for the surface tension model was developed for moving particle methods. The algorithm
is based on the link-list search algorithm and the continuum surface tension (CST) model. The developed
algorithm with the CST model was implemented to a kind of moving particle approach, the finite volume
particle (FVP) method. The FVP method with the new algorithm was tested by oscillatory behaviour of a
two-dimensional droplet. The oscillatory period agrees well with analytical one, and the transient shape of
the droplet is also in good agreement with that obtained by other numerical methods. The droplet impact
on a liquid surface was also studied using the new algorithm. The deposition and splashing phenomena
were clearly reproduced. Simulated spread radius of the splashing phenomena was consistent with a power
law. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Surface tension force is very important in fluid dynamics, especially in multiphase and free surface
flow problems. The continuum surface tension (CST) model [1] has been developed and widely
applied to calculate the surface tension force in Eulerian methods. Though it was originally proposed
for grid methods, the CST model has been also applied in moving particle methods nowadays, for
example, in the smoothed particle hydrodynamics (SPH) method [2] and the moving particle semi-
implicit (MPS) method [3]. In the MPS method, the unit normal and curvature of the interfaces
are estimated from the particle number density. However, it is difficult to precisely estimate the

∗Correspondence to: Shuai Zhang, Department of Applied Quantum Physics and Nuclear Engineering, Kyushu
University, Fukuoka, Japan.

†E-mail: zhang@nucl.kyushu-u.ac.jp

Contract/grant sponsor: Ministry of Education, Culture, Sports, Science and Technology

Copyright q 2007 John Wiley & Sons, Ltd.



226 S. ZHANG ET AL.

curvature near the surface when particle arrangement is in disorder, especially in three-dimensional
cases.

It is worth to note that the surface tension force was successfully simulated in a hybrid particle-
mesh combined method [4]. In this method, each moving particle is assumed to hold a fixed
volume. The surface tension force is calculated for each moving particle using the same model as
that in the MPS method. Then the momentum caused by the surface tension and other external
forces are extrapolated from moving particles to background cells according to the overlaid volume
between particles and mesh cells. After that, the pressure will be estimated on the background
mesh with the incompressible constraint. Finally, the momentum is transferred from background
mesh to moving particles. With this combined method, the unnaturally estimated surface tension
force caused by the disorder of moving particles can be smoothed out on the background mesh.

Recently, a new fully Lagrangian moving particle method, named the finite volume particle
(FVP) method, was developed for incompressible fluids with free surface [5]. In the FVP method,
assuming that one particle occupies a finite volume, governing equations are discretized using
the approach of the finite volume method. The solution scheme is based on the pressure implicit
with splitting of operators (PISO) algorithm. The discretized matrix equations are solved using the
incomplete Cholesky conjugate gradient (ICCG) algorithm. Compared to the MPS method, which
is also a fully Lagrangian moving particle method for incompressible fluids, the FVP method
can estimate the pressure more reasonably and thus numerically more stable [5]. In addition, this
method needs no special treatment for moving particles on the free surface.

Since each FVP particle occupies a finite volume, it is natural to implement the same particle-
mesh combined algorithm as mentioned above. In the present study, a temporal background mesh
is automatically built up with the implementation of the link-list search algorithm [6]. The mass
of each cell is extrapolated from moving particles, based on their overlaid volumes. Thereafter,
the surface tension force can be easily estimated on the background mesh using the CST model.
Finally, the surface tension force for each moving particle is extrapolated from the background
mesh according to their overlaid volumes.

In this new algorithm for the surface tension model, the mass and momentum between moving
particles and the background mesh are conserved. The extrapolated mass field of the background
mesh is always smooth in the implementation of this algorithm. Correspondingly, the curvature on
the interface can be estimated precisely and stably using the CST model.

Two benchmark calculations will be performed to verify the proposed algorithm for the surface
tension model in moving particle methods. One is the oscillation of a liquid droplet; the other is the
impact of a liquid droplet on a liquid surface. Simulated results will be compared with analytical
ones and those obtained by other numerical methods.

2. OVERVIEW OF FVP METHOD

2.1. Governing equations

With the Gauss’s law, governing equations for incompressible flows, namely the mass and
momentum conservation equations are rearranged as follows:

∮
s
u · n ds = 0 (1)
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D

Dt

∫
V
u dV = −1

�

∮
s
pn ds + 1

�

∮
s

�∇u ds + F (2)

where F is the external force.

2.2. Discretization method

As shown in Figure 1, the control volume of one moving particle is assumed as a circle in
two-dimensional simulations [5]:

�R2 = (�l)2 (3)

where R and �l are radius of particle control volume and initial particle distance, respectively.
Then Equation (2) can be arranged as

Du
Dt

= − lim
R→0

1

��R2

∮
s
pn ds + lim

R→0

1

��R2

∮
s

�
�u
�n

ds + F (4)

The interaction surface of particle j to particle i , �Si j , is estimated as [5]
�Si j = 2R�i jn (5)

Figure 1. Interaction between two particles.
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Figure 2. Interaction between two particles within a limited support domain.

where n is the unit vector of distance between two particles

n= ri j/|ri j | = (r j − ri )/|ri j | (6)

and the parameter �i j is defined as

�i j = sin−1(R/|ri j |) (7)

In order to define a compact interaction domain, the following treatment is necessary [5]:
�̂i j = sin−1(R/|ri j |) − sin−1(R/re) (8)

where re is the cut-off radius, as shown in Figure 2. Thereafter, the interaction surface will be
normalized as

�Si j =
⎧⎨
⎩
2�R�̂i jn, �̂i j � 0

0, �̂i j<0
(9)

where parameter � is

� = �

/
n∑

j=1, j �=i
�̂i j (10)

From above on, Equation (4) is discretized as(
Du
Dt

)
i

= − 1

��R2

n∑
j=1, j �=i

(
pi + p j − pi

|ri j | R

)
�Si j + �

��R2

n∑
j=1, j �=i

u j − ui
|ri j | |�Si j | + F (11)

It is worth to note that the pressure gradient and the velocity Laplacian terms of Equation (11)
are of first-order accuracy.
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Figure 3. Boundary treatments in the FVP method: (a) free surface and (b) wall boundary.

2.3. Boundary conditions

In the FVP method, there are two kinds of boundary conditions, wall and free surface boundary
conditions. As seen in Figure 3(a), S1 is referred to the surface of one particle on the free surface:

S1 = −∑�Si j (12)

|S1| = 2�R −∑|�Si j | (13)

Zero pressure and velocity gradients are set on the free surface.
Figure 3(b) shows the wall boundary treatments. The pressures of inner wall particles should be

calculated together with fluid particles. A static pressure head is added for the outer wall particles
as [5]

pk = p j + �ghk j (14)

where hk j is the distance between particles j and k in the direction of gravity. According to the
non-slip boundary condition, zero velocity is kept on the inner wall particles with the second-order
accuracy as

uk = −ui
hi
hk

(15)

where hi and hk are the distances for particles i and k away from the wall.

2.4. Pressure Poisson equation

Combining Equations (1) and (2), a pressure Poisson equation can be obtained:

1

�

∮
s
(∇ p) · n ds = 1

�t

∫
V
(∇ · u) dV (16)
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In the FVP method, Equation (16) is discretized as

1

�

n∑
j=1, j �=i

p j − pi
|ri j | |�Si j | + pfree − pi

�R
|S1|

= 1

�t

n∑
j=1, j �=i

(
ui + u j − ui

|ri j | R

)
· �Si j + 1

�t

[
ui +

(
�u
�n

)
free

R

]
· S1 (17)

where pfree and (�u/�n)free are the values of pressure and velocity gradient on the free surface. In the
present studies, both of them are set as zero. According to the boundary treatments, Equation (17)
is rewritten as

1

�

n∑
j=1, j �=i

p j − pi
|ri j | |�Si j | − pi

�R
|S1|

= 1

�t

n∑
j=1, j �=i

(
ui + u j − ui

|ri j | R

)
· �Si j + 1

�t
ui · S1 (18)

2.5. Time integration

A fully implicit algorithm, the PISO algorithm [7], is incorporated in the FVP method, as seen
in the Figure 4 [5]. In the present studies, the first-order forward time scheme was implemented.
Firstly, particles move with assumed new-time velocities:

u∗
i =uni (19)

r∗
i = rni + u∗

i �t (20)

Thereafter, parameters, such as �S∗
i j , |�S∗

i j |, S∗
1 and |S∗

1| are temporally updated.
Secondly, the discretized momentum conservation and pressure Poisson equations

u∗
i − ��t

��R2

n∑
j=1, j �=i

u∗
j − u∗

i

|r∗
i j |

|�S∗
i j | =uni − 1

�R2

n∑
j=1, j �=i

(
p̂∗
i +

�
p∗
j − p̂∗

i

|r∗
i j |

R

)
�S∗

i j + F�t (21)

n∑
j=1, j �=i

p̂∗
j − p̂∗

i

|r∗
i j |

|�S∗
i j | − p̂∗

i

R
|S∗

1| =
n∑

j=1, j �=i

(
u∗
i + u∗

j − u∗
i

|r∗
i j |

R

)
· �S∗

i j + u∗
i · S∗

1 (22)

where

�
p

∗ = �t

�
p∗ (23)

will be solved by the ICCG algorithm [8]. The temporal pressures and velocities will be obtained.
If solutions are satisfied, the temporal pressures and velocities are saved and particle positions

will be updated with these new velocities; otherwise, they are used as assumed velocities and
pressures and calculations go back to the first step to get temporal positions and parameters. In a

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:225–240
DOI: 10.1002/fld



SURFACE TENSION MODEL IN MOVING PARTICLE METHODS 231

Figure 4. PISO algorithm applied in the FVP method.

turn, discretized Equations (21) and (22) will be solved. Iterations are generated in this way. In
general, three iterations are enough for moderate errors.

The time increase will be taken according to the CFL condition as follows:

max

∣∣∣∣∣
(unj − uni ) · n�t

|rni j |

∣∣∣∣∣<� (24)

where � is usually chosen as 0.2 [5]. Otherwise, the half value of old time increase is used.

3. A NEW ALGORITHM FOR SURFACE TENSION MODEL

3.1. Link-list search algorithm

In moving particle methods, each particle interacts with others in a compact support domain. In
this case, it is necessary to apply some search algorithm to improve calculation efficiency. Since
the FVP method has a spatially constant interaction length, the link-list search algorithm [6] is
considered to be most appropriate for it. In the present study, a temporal grid is overlaid on the
FVP calculation region when the link-list search algorithm is applied, as shown in Figure 5. The
two-dimensional calculation region is separated into a set of square cells. In each cell, there are a
certain number of particles in it. Particles interact with those in the same or neighbour cells. This
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Figure 5. Schematical description of the link-list search algorithm.

search algorithm has been widely used in moving particle methods, such as the SPH and MPS
methods.

3.2. Application of CSF model to FVP method

As we know, the CST model was originally developed for grid methods [1]. When it is applied
in moving particle methods, the curvature and unit normal of the interface are usually estimated
from particle number densities [3]. However, it is necessary to remove the singularity in the
simulations caused by disorder in particle arrangements. In addition, when the calculation geometry
is complicated, it is very difficult to estimate the curvature precisely.

In this study, by overlaying a temporal grid on the FVP calculation region, we apply the CST
model to this temporal grid. Since the CST model evaluates the surface tension as a volume force,
the surface tension force acting on a moving particle can be interpolated from the volume force
of the grid according to the overlaid volume between particles and cells. As a result, the surface
tension force acting on particles could be estimated reasonably with the standard CST model. The
mathematical approach of this new algorithm for the surface tension model is explained as follows.

At first, the control volume of a particle is assumed as a square in two dimensions. As shown
in Figure 6, the mass of cell is estimated by extrapolation from moving particles to cells as

m(i i, j j) = �
∑N

k=1 A
k
ii, j j

�(�L)d
=

N∑
k=1

Ak
ii, j j

(�L)d
� 1 (25)

where m is the mass of one cell, d is number of dimensions, N is the number of particles in a
cell, �L is the size of the background grid and Ak

ii, j j is the volume that particle k overlapped with
a cell (i i, j j).

Then the surface tension force can be estimated using the CST model on the background grid
[9]. Lastly, the surface tension of moving particles is extrapolated from the grid as

Fi · (�l)d =
[∑
i i, j j

Ai
ii, j j

(�L)d
Fv(i i, j j)

]
· (�L)d (26)
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Figure 6. Extrapolation of cell mass from particles.

where Fi and Fv are the surface tension force of particles and cells, respectively. Ai
ii, j j is the

overlapped volume between particle i and cells. In the present study, �L is set to be 2.0�l.

4. NUMERICAL SIMULATIONS

4.1. Oscillation of square liquid droplet

Oscillation of a square liquid droplet is a good test case for the surface tension model, which has
been simulated by both grid methods [1] and particle methods [2, 3]. In the present simulation, an
ethanol square droplet with �= 797.88 kgm−3, L = 0.075m and � = 0.02361Nm−1 under surface
tension was simulated with the proposed algorithm for the surface tension model. Gravity and other
external forces were neglected. As shown in Figure 7, the initial particle array was 50 × 50. The
initial particle distance was 0.00125m.

There is an analytic expression for the oscillation frequency of two-dimensional drop in zero
gravity as [10]

wn = (n3 − n)�

�R3
0

(27)

where n is the mode number of oscillation (n = 4 in the present simulation) and R0 is unperturbed
radius of the droplet. According to Equation (27), the oscillation period of the ethanol droplet
should be 1.30 s in the present case.

Simulation results are shown in Figures 8 and 9. In Figure 8, the transient shapes of the oscillatory
liquid droplet are shown at four different time steps. Figure 8 shows the kinetic energy changes
with time. From these two figures, it can be found that the simulated oscillation period was 1.31 s,
which was a little larger than the analytical result. The shape of the ethanol droplet rotated by 45◦
at 0.57 and 1.78 s, while turned to the initial shape at 1.31 and 2.51 s. As can be seen in Figure 8,
numerical dissipation eventually damps the oscillation and finally causes the droplet to approach
an equilibrium spherical shape. The simulation results agree well with the analytical results and
those obtained by others [1, 3].
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Figure 7. Initial particle arrangement of the square liquid droplet.

4.2. Droplet impact

A liquid droplet impact on a liquid surface can result in deposition or splashing of the surface, and,
in some special cases, floating or bouncing of the droplet may also occur. There is a review of this
complicated phenomenon [11]. Recently, the direct numerical simulation of this phenomenon has
attracted attentions of many researchers [12, 13]. In this study, the FVP method with the proposed
algorithm for the surface tension model was used to simulate this phenomenon.

The relevant non-dimensional parameters for this phenomenon are the Weber number and the
Reynolds number as follow:

We= 2�U 2R

�
(28)

Re= 2�UR

�
(29)

where U is the velocity of the droplet at the instant of impact on a static liquid surface, R is
the radius of the droplet, � is the surface tension coefficient and � is the dynamic viscosity.
The non-dimensional time is measured by 2R/U . Previous research has established an empirical
relation, named as the Sommerfeld’s law, for the crossover between spreading and deposition
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Figure 8. Simulated sequences of oscillation of the square ethanol droplet under the surface tension force.

behaviours [14]. The crossover means when an empirical parameter K

K =We0.5 Re0.25 (30)

is smaller than a threshold value Kc, only deposition is observed. Otherwise, splashing develops.
In addition, the spread radius of splashing, r , was found to be expressed by a power law [12]:

r ∼=
√
DUt (31)

Though it is difficult to precisely decide the value of Kc, splashing occurs when the Reynolds
number is large enough under a certain value of the Weber number. Following previous simula-
tions [12], a serial of computations was performed in the range of the Reynolds numbers 20–500.
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Figure 9. Transient kinetic energy for the square ethanol droplet oscillation.

Figure 10. Time evolution of droplet deposition at Re = 20 and We = 8000 (the initial diameter and
velocity of the droplet were 0.05m and 40.0m s−1, respectively; the length and height of the liquid layer
were 0.05 and 0.025m, respectively; the length and height of the tank were 0.05m. Simulation results in

the left part of the figure are enlarged and showed in the right).

The Weber number was fixed as 8000. In the present two-dimensional simulations, the interface
between liquid and gas was assumed as free surface and hence only liquid phase was considered.
Same fluid properties were used for both the droplet and the liquid layer. In the simulations,
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Figure 11. Time evolution of droplet splashing at Re = 100 and We = 8000 (the initial diameter and
velocity were 0.0125m and 8.0m s−1, respectively; the length and height of the liquid layer were 0.125
and 0.625m, respectively; the length and height of the tank were 0.125m. Simulation results of the left

part of the figure are enlarged and showed in the right).

Figure 12. Time evolution of droplet splashing at Re = 500 and We = 8000 (the initial diameter and
velocity of the droplet were 3.125m and 1.6m s−1, respectively; the length and height of the liquid layer
were 31.25 and 15.625m, respectively; the length and height of the tank were 31.25m. Simulation results

in the left part of the figure are enlarged and showed in the right).
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Figure 13. Log–log plot of the spread factor r/2R as a function of non-dimensional time Ut/2R.

the density, surface tension coefficient and the dynamic viscosity were chosen as 1000 kgm−3,
1.0Nm−1 and 10.0 kgms−1, respectively. The initial diameter and velocity of the droplet were
calculated according to the different Reynolds number and the given Weber number. The length
and depth of liquid layer were 10 and five times of the diameter of the droplet, respectively. The
droplet was simulated by 1276 particles. The particle array of the liquid layer was 400 × 200.

Simulation results are shown in Figures 10–13. Figures 10–12 indicate time evaluations of the
droplet deposition or splashing phenomena at different Reynolds numbers. The development of
the splashing spread radius at different Reynolds numbers is shown in Figure 13.

As can be seen in Figure 10, the deposition phenomenon was reproduced when the Reynolds and
Weber numbers were 20 and 8000, respectively. In other cases, splashing phenomenon occurred as
shown in Figures 11 and 12. The simulated deposition and splashing phenomenon agreed well with
those obtained by the lattice Boltzmann method [12]. Figure 13 shows the spread radius changed as
a function of non-dimensional time. The simulated results agreed with the power law, Equation (31).

5. CONCLUSION

In this study, a new algorithm for the surface tension model in moving particle methods was
proposed to simulate free surface flow with the surface tension. The oscillatory behaviour of an
ethanol droplet and the droplet impact into a liquid surface were successfully simulated using the
FVP method with the proposed algorithm. The FVP simulation reproduced characteristics of the
oscillatory droplet reasonably. The deposition and splashing phenomena in the droplet impact were
successfully simulated with different Reynolds numbers. The simulated splashing spread radius
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was in agreement with a power law. The present results show that the proposed algorithm can
be applied in moving particle methods to simulate flow problems related with the surface tension
force.

NOMENCLATURE

A Overlapped volume between cell and particle (m3)

d, D spatial dimensions or diameter (m)
F external volume force or driven force (ms−2)

h height (m)
l, L length (m)
m fluid mass in one cell (kg)
n unit normal of surface
p pressure (Pa)
r position vector (m)
R radius of particle control volume (m)
re cut-off radius of the kernel function
Re Reynolds number
S surface of particle control volume (m2)

T Temperature (K)
t time (s)
u velocity (ms−1)

V control volume of particles (m3)

W Frequency (s−1)

We Weber number

Greek letters

� tuning parameter for the estimation of interaction between particles
� an arbitrary small number
�, �̂ interaction parameter between particles
� arbitrary scalar quantity
� density (kgm−3)

� kinematic viscosity (m2 s−1)

�l initial distance between two particles (m)
�L size of grid (m)
�t time step size (s)
� surface tension coefficient (Nm−1)

� dynamic viscosity (kgm−1 s−1)

Subscripts

i, j particle number

Superscripts

∗ temporal value
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